If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+2n-20=0
a = 2; b = 2; c = -20;
Δ = b2-4ac
Δ = 22-4·2·(-20)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*2}=\frac{-2-2\sqrt{41}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*2}=\frac{-2+2\sqrt{41}}{4} $
| x+5/4=13-x/2 | | 177-w=88 | | 20-u=4u | | 15x+14.00=14.60 | | 3x+23=4x+15 | | (4x(x^2-16)-(2x^2)(2x))/(x^2-16)^2=0 | | 3t+5=t+17 | | n+5=6n | | x/20x20=180/100x20 | | 5r^2+7r-1=0 | | 8.5=1.7m | | (x*x)+(x+x)=-3 | | 5=5.1+2.6m | | 3r^2+6r-7=0 | | .25x+.05x=48 | | .3x=48 | | 5(4.2+0.4x)-8=2x+13 | | 5x+6(2x+3)=154 | | 0.5p-5=p | | 5(w-2)=7w-14 | | x*1.15x=210 | | 7n^2+2n-8=0 | | 4(v+5)-6v=18 | | .5(x+12)+2=1.25(x+8)-9.5 | | 25=4w+1 | | 18=9-3u | | 16x^2=300 | | (4^x)^x+1=16 | | 3x+5(2x+7)=113 | | 8(2x-2)=32 | | 8(2x-2)=32 | | 65=1/5(325-4e) |